Pair-independence and freeness analysis through linear refinement

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wronskians and Linear Independence

Obviously, a family of linearly dependent functions has a zero Wronskian. Many standard textbooks on differential equations (e.g., [10, Chap. 5, §5.2], [22, Chap. 1, §4], [9, Chap. 3, §7]) contain the following warning: linearly independent functions may have an identically zero Wronskian! This seems to have been pointed out for the first time by Peano [20, 21], who gave the example of the pair...

متن کامل

-freeness of a Class of Linear Systems

1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 Centre Automatique et Syst emes, Ecole des Mines de Paris, 60, bd. Saint-Michel, 75272 Paris Cedex 06, France. Tel: (33) 01 40 51 93 29. E-mail: [email protected] ELF ANTAR FRANCE, CRES, BP 22 69 360 Solaize, France. Tel: 04 78 02 64 67. E-mail: yann.cre @s1.elf-antar-france.elf1.fr Centre Automatique et Syst emes, Ecole des Mines de Pa...

متن کامل

Linear Independence and Choice

The notions of linear and metric independence are investigated in relation to the property: if U is a set of m + 1 independent vectors, and X is a set of m independent vectors, then adjoining some vector in U to X results in a set of m + 1 independent vectors. A weak countable choice axiom is introduced, in the presence of which linear and metric independence are equivalent. Proofs are carried ...

متن کامل

Shape Refinement through Explicit Heap Analysis

Shape analysis is a promising technique to prove program properties about recursive data structures. The challenge is to automatically determine the data-structure type, and to supply the shape analysis with the necessary information about the data structure. We present a stepwise approach to the selection of instrumentation predicates for a TVLA-based shape analysis, which takes us a step clos...

متن کامل

A refinement of Nesterenko’s linear independence criterion with applications to zeta values

We refine (and give a new proof of) Nesterenko’s famous linear independence criterion from 1985, by making use of the fact that some coefficients of linear forms may have large common divisors. This is a typical situation appearing in the context of hypergeometric constructions of Q-linear forms involving zeta values or their q-analogues. We apply our criterion to sharpen previously known resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 2003

ISSN: 0890-5401

DOI: 10.1016/s0890-5401(02)00048-2